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Abstract
Effects of the disorder (or free-orientation) on the multiple scattering situation
by using discrete velocity models for the possible (dynamical) localization
and/or delocalization of (plane) sound waves propagating in dilute monatomic
hard-sphere gases are presented. After comparing with previous free-
orientation (n = 2) results, we show that there also exists a certain gap of the
spectra for the relevant periodic (wave-propagating) operator when the disorder
or free-orientation exists and when a periodic medium with a gap (in spectra)
is (slightly) randomized (like our orientation-free 6- and 8-velocity cases) then
possible localization and/or delocalization occur in a vicinity of the edges of
the gap, even when multiple scattering is being considered.

PACS numbers: 34.10.+x, 02.30.Jr, 02.30.Mv, 34.50.-s, 43.35.Ae, 43.20.El

1. Introduction

The multiple scattering of particles and waves was intensively studied around the early
1950s [1]. The relationship between the multiple scattering and localization, however, to
the best knowledge of the author, is still open. Localization of classical waves occurs when the
scale of the coherent scattering reduces to the wavelength itself. Recently studies of micro-
scale and nano-scale phenomena have arisen in the interdisciplinary research areas of materials
physics and chemistry or biology, where it is even more necessary to perform investigations at
the atomic and molecular level by using modern technologies or smart sensing techniques for
the wave scattering in complex, porous or heterogeneous media [2]. Special attention has been
paid to the study of static or dynamical localization [2–8]. The former (Anderson localization)
normally links to the phenomenon that at some site the wavefunction has a maximum amplitude
and decreases exponentially away from that site. Both theory and experiment are in a state of
rapid progress, including acoustical analogues considering continuum mechanic and quantum
mechanic approaches [5–7]. Note that studies of classical wave mechanical systems have
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some important advantages over quantum mechanical wave systems even though there are
similarities between them.

In a mesoscopic system, where the sample size is smaller than the mean free path for
elastic scattering, it is satisfactory to use a one-electron model to solve the time-independent
Schrödinger equation:

− h̄2

2m
∇2ψ + V ′(�r)ψ = Eψ or ∇2ψ + [q2 − V (�r)]ψ = 0 (1)

(after dividing by −h̄2/2m), where q is an (energy) eigenvalue parameter, which for the quan-
tum mechanical system is

√
2mE/h̄2. Meanwhile, the equation for classical (scalar) waves is

∇2ψ − 1

c2

∂2ψ

∂t2
= 0

or after applying a Fourier transform in time and contriving a system where c (the wave speed)
varies with position �r

∇2ψ + [q2 − V (�r)]ψ = 0. (2)

Here, the eigenvalue parameter q is ω/c0, where ω is a natural (or an eigen-) frequency and
c0 is a reference wave speed. Comparing the time dependences one sees the quantum and
classical relation E = h̄ω [3]. The control and observability of the classical experimental
analogues may be matched by analytical works or numerical simulations. However, classical
systems could be used to study time-dependent potential fields and nonlinear effects, which
are very difficult and time-consuming to treat numerically or analytically. Motivated by the
analogy between electrons in periodic or disordered metals and waves in classical acoustical
systems, an investigation for observing classical (Anderson) localization [8] using discrete
velocity models was performed and will be presented here.

The problem for plane (sound) waves propagating in dilute monatomic (hard-sphere) gases
must be well defined and then solved to obtain the complex spectra or dispersion relations
(real part: sound dispersion; imaginary part: sound attenuation or absorption) [9–11]. In
comparison with experiments, results of the continuous velocity approach gave a better fit than
the discrete velocity one [9–11]. The integral form of the former, however, may smooth out
some peculiar phenomena or only give bulk physical behaviour considering the continuous
distribution of the particles’ velocities. The discrete form of the latter, i.e. the particles’
velocities (and thus the associated number density) being a finite set while keeping the space
and time continuous, provides possibilities to adjust the discrete velocity, for example, the
free orientation of it in the two-dimensional plane (or a kind of disorder for co-planar velocity
models), and then solve relevant problems to gain more physical insights for specific interests.
For instance, sound propagation in random or disordered media might be such a case [6, 7].

Our previous attempts using free-orientation discrete velocity models (2n-velocity models,
where n stands for the possible number of incident or scattered velocity directions) gave rather
physical results about the newly found localization [3], especially for the n = 2 case which
might correspond to the single-scattering situation [9–11]. In this paper, we set n = 3 and 4
for the orientation-free models which could be thought of as introducing a kind of multiple
scattering and then re-examine the dispersion relations (complex spectra) for the ultrasound
propagation in hard-sphere (monatomic) gases. Sound waves are presumed to be plane waves.
Our preliminary results show that for θ ∼ 0 and/or θ = π/(2n), θ being a disorder parameter,
there exist gaps of spectra for the corresponding periodic (wave-propagating) operator and
possible (dynamical) localization (especially when the mean free path is of the same magnitude
as the wavelength) which are similar to those reported in [2–8]. Our (discrete kinetic) approach,
since it includes the non-uniform variation of those transport coefficients, like viscosity and
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thermal conductivity which are related to the mean free path of many particles (say, photons
or electrons [5]) [9, 10] and cannot be handled by using the continuum mechanic or simple
quantum mechanic approaches (e.g., that by Kirkpatrick in [5]), will thus give researchers
more insights for similar problems.

2. Formulations

We assume that the (electron or photon) gas is composed of identical particles of the same
mass. The velocities of these particles are restricted to, for example, u1,u2, . . . ,up, where
p is a finite positive integer. The discrete number density of particles is denoted by Ni(r, t)

associated with the velocity ui at point r and time t . If only nonlinear binary collisions are
considered, using the microreversibility property which will be defined later and considering
the evolution of Ni , we have

∂Ni

∂t
+ ui · ∇Ni =

p∑
j=1

∑
(k,l)

(A
ij

klNkNl − Akl
ijNiNj ) i = 1, . . . , p

where (k, l) are admissible sets of collisions. We may then define the right-hand side of the
above equation as

Qi(N) = 1
2

∑
j,k,l

(A
ij

klNkNl − Akl
ijNiNj )

with i ∈ � = {1, . . . , p}, and the summation is taken over all j, k, l ∈ �, where A
ij

kl are
non-negative constants satisfying

A
ji

kl = A
ij

kl = A
ij

lk indistinguishability of the particles in collision

A
ij

kl(ui + uj − uk − ul) = 0 conservation of momentum in the collision

A
ij

kl = Akl
ij microreversibility condition.

The conditions defined for the discrete velocity above require that elastic, binary collisions,
such that momentum and energy are preserved ui +uj = uk +ul , |ui |2 + |uj |2 = |uk|2 + |ul|2,
are possible for 1 � i, j, k, l � p.

The collision operator is now simply obtained by joiningAkl
ij to the corresponding transition

probability densities aklij through Akl
ij = S|ui − uj | aklij , where

aklij � 0
p∑

k,l=1

aklij = 1 ∀ i, j = 1, . . . , p

where S is the effective collisional cross-section and the same order of magnitude as
that (a, radius of hard-sphere scatters) used by Kirkpatrick in [1]. If all n (p = 2n) outputs
are assumed to be equally probable, then aklij = 1/n for all k and l, otherwise aklij = 0.
S|ui − uj |Nj is the number of j -molecules involved by the collision in unit time. Collisions
which satisfy the conservation and reversibility conditions which have been stated above are
defined as admissible collisions.

Thus, the model of discrete Boltzmann equation [9–12] is a system of 2n(=p) semilinear
partial differential equations of the hyperbolic type:

∂

∂t
Ni + ui · ∂

∂x
Ni = 2cS

n

n∑
j=1

NjNj+n − NiNi+n i = 1, . . . , 2n (3)

where Ni = Ni+2n (since we only consider head-on collisions during binary encounter and
there are n different incident or scattered velocity directions) are unknown functions, and
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ui = c(cos[θ + (i − 1)π/n], sin[θ + (i − 1)π/n]), c is a reference velocity modulus and
the same order of magnitude as that (c, the sound speed in the absence of scatters) used by
Kirkpatrick in [1], and θ is the orientation starting from the positive x-axis to the u1 direction
and could be thought of as a parameter for introducing a disorder (cf [3, 9–11]).

As passage of the sound wave will cause a small departure from equilibrium (Maxwellian
type) which then results in energy loss owing to internal friction and heat conduction, we
linearize the above equations around a uniform Maxwellian state (N0) by setting Ni(t,x) =
N0[1+Pi(t,x)], wherePi is a small perturbation. The linearized version of the above equations
is

∂

∂t
Pm + um · ∂

∂x
Pm + 2cSN0(Pm + Pm+n) = 2cSN0

n

2n∑
k=1

Pk m = 1, . . . , 2n (4)

In these equations after replacing the index m with m+n and using the identities Pm+2n = Pm,
then we have

∂

∂t
Pm+n − um · ∂

∂x
Pm+n + 2cSN0(Pm + Pm+n) = 2cSN0

n

2n∑
k=1

Pk. (5)

Combining above two equations, firstly adding then subtracting, with Am = (Pm + Pm+n)/2
and Bm = (Pm − Pm+n)/2, we obtain

∂

∂t
Am − c cos

[
(m − 1)π

n
+ θ

]
∂

∂x
Bm + 4cSN0Am = 4cSN0

n

2n∑
k=1

Ak (6)

∂

∂t
Bm + c cos

[
(m − 1)π

n
+ θ

]
∂

∂x
Am = 0 m = 1, . . . , 2n. (7)

From Pm+2n = Pm, and with Am = (Pm + Pm+n)/2 and Bm = (Pm − Pm+n)/2, we have
Am+n = Am, Bm+n = −Bm. After some manipulations [9–12], we{
∂2

∂t2
+ c2 cos2

[
θ +

(m − 1)π

n

]
∂2

∂x2
+ 4cSN0

∂

∂t

}
Dm = 4cSN0

n

n∑
k=1

∂

∂t
Dk (8)

where Dm = (Pm + Pm+n)/2, m = 1, . . . , n, since D1 = Dm for 1 = m (mod 2n). We are
ready to look for the solutions in the form of plane wave Dm = am exp i(kx − ωt)

(m = 1, . . . , n) with ω = ω(k). This is related to the dispersion relations of one-dimensional
forced ultrasound propagation of the rarefied gases problem. Consequently, we have{

1 + ih − 2λ2 cos2

[
θ +

(m − 1)π

n

]}
am − ih

n

n∑
k=1

ak = 0 m = 1, . . . , n (9)

with

λ = kc/(
√

2ω)

h = 4cSN0/ω ∝ 1/Kn
(10)

where h is the rarefaction parameter of the gas; Kn is the the Knudsen number defined as the
ratio of the mean free path of particles to the wavelength of ultrasound [9–11].

Let am = C/(1 + ih − 2λ2 cos2[θ + (m − 1)π/n]), where C is an arbitrary, unknown
constant, since here we are only interested in the eigenvalues of the above relation. The
eigenvalue problems for the different 2n-velocity model reduces to Fn(λ) = 0, or

1 − ih

n

n∑
m=1

1

1 + ih − 2λ2 cos2
[
θ + (m−1)π

n

] = 0. (11)
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Figure 1. Comparison of 2n-velocity orientational effects (θ = 0, 0.1, 0.25, 0.4, π/6, 2 × π/6 −
0.4) on: (a) the dispersion λr , h = 4cSN0/ω, S is the effective collisional cross-section, n = 3;
(b) the attenuation λi , n = 3; (c) the dispersion λr , n = 4; (d) the attenuation λi , n = 4.

We only solve n = 3, 4, i.e. the 6- and 8-velocity cases, here. The corresponding eigenvalue
equations become of algebraic polynomial-form with the complex roots being the results of
λ [3]. As a continuous investigation of our previous works (n = 2) [3] and a similar study to
the localization of classical (acoustic) waves (the primary interest only relates to the spectra
of the relevant operator) [3, 4, 6, 8], we examine only the eigenvalues of the above equations
for two cases (n = 3, 4) which means the possible (incident or scattered) direction of discrete
velocities on binary encounter for head-on collisions could be three and four instead of two.

3. Results and discussions

As θ �= 0 and n increases, the complex-root-finding procedure thus becomes much more
complicated than before. After verifying our new results (θ �= 0), i.e. once we can recover
the θ = 0 results [9, 10] from equation (11), we then solve step by step equation (11) to
get the complete (complex) spectra from θ = 0 up to θ = π/2. We only present those of
θ up to π/(2n) as spectra of orientation effects are symmetric w.r.t. θ = π/(2n) after our
checking [11, 12]. They are shown in figures 1 and 2.

We can observe that, the smaller (absolute values of λ) branch (propagation of sound
mode) or lower values of both λr and λi (figures 1(a), (c) and figures 1(b), (d) for n = 3, 4,
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Figure 2. Orientational effects (θ ) on the diffusion mode: (a) dispersion λr , n = 3 case;
(b) attenuation λi ; (c) dispersion λr , n = 4 case; (d) attenuation λi .

respectively) shows a continuous trend as θ increases toward π/(2n). The dispersion (λr , a
relative measure of the sound or phase speed) keeps increasing while the attenuation or
absorption (λi) keeps decreasing as θ increases from 0. This result provides a good verification
for our previous works mentioned in [3, 11] even though n now increases from 2 to 3 and 4
which are related to the multiple scattering cases. We also notice that around h ∼ 1 as shown
in figures 1(b) (n = 3) and 1(d) (n = 4), there exists a trend for the absence of diffusion
(λi starts decreasing rapidly). The latter trend (n = 4) is sharp enough which seems to be
enhanced by the multiple scattering (cf page 34 of [5] for the case of h ∼ 1 where a transition
from extended to localized normal modes takes place as discussed by John). In fact, there are
gaps of spectra (both λr and λi) for the corresponding operator (which resembles that reported
by Figotin [6] or Figotin and Klein [8]) when n = 4 as shown in figures 1(c) and (d) for the
case of θ = 0 where h ∼ 1.

Meanwhile, for the larger (absolute values ofλ) branch (the anomalous one which is similar
to those for propagation of the diffusion mode or entropy wave reported in [9, 10]) or higher
values of both real and imaginary roots (figures 2(a), (c) and figures 2(b), (d) for n = 3, 4
respectively), there is no discontinuity near θ = 0 compared to the case of n = 2 [3, 11].
Once θ increases from zero, there also exists no gap compared to the case of n = 2 [3, 11].
Spectra (both the dispersion λr and the absorption or attenuation λi) will span only for a limited
range (after starting from θ = 0 which means there is no disorder) and then approach to the
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asymptotic case π/(2n) which accounts for the propagation of the diffusion mode or entropy
wave as verified in [9, 10]. Interestingly, there exist gaps or sudden transitions (resembling of
figures 4 and 5 in [5] presented by John; the Rayleigh scattering at low frequencies resembles
our diffusion mode) for this kind of diffusion mode when h ∼ 1 in the dispersion relation for
both the n = 3 (a sudden transitions near h = 1) and n = 4 (gaps near h = 1) cases as shown
in figures 2(a), (c) and 2(b), (d) respectively. The observed gap for n = 4 (h ∼ 1) is orientation
or disorder dependent as shown in figures 2(c) and (d). Note that from the definition of h or Kn,
h = fcollision/fsound, where fsound (cf that used by Kirkpatrick in [5]) is related to the classical ω
as mentioned in the introduction (cf equations (1) and (2)) so that it is relevant to the energy E

as defined for the localization; thus we can estimate the localization length from those figures
which vary with h. The localization length (ξ depending on the internal frequency) defined
in [5] by Kirkpatrick is proportional to the (hydrodynamic) mean free path c · l (l also depends
on the internal frequency) and, comparing the definition of h here, is thus related to the inverse
of h that we used. In fact, Kirkpatrick obtained the expression of ξ by setting ω → 0 in [5]
(cf equation (5.1b) therein). Based on these considerations and equations (1) and (2), the
relation for the (possible) localization length versus the frequency extracted from our results
(especially in figures 1(b) and (d); the attenuation or absorption defined here is related to the
inverse measure of (say, one wave) length; the maximum absorption then corresponds to the
minimum localization length in figure 5(a) of [5] by Kirkpatrick) is qualitatively similar to that
reported by Kirkpatrick in [5]. Note that the spectrum associated with a periodic medium has a
bandgap structure and that the most significant manifestation of coherent multiple scattering is
the rise of a gap in the spectrum (cf Figotin [6] or Figotin and Klein [8]). Here, as n increases
to 4, for h ∼ 1, gaps of spectra occur as shown in figures 2(c) and (d).

To conclude in brief, our calculations here, as they are either orientation dependent or
related to the multiple scattering, may also give more clues to the reconstruction of the time-
reversed acoustic field (via the angular spectrum), the experimental set-up for ultrasound
transducers or the understanding of sound propagation in microscopically random, disordered
or granular media [13, 14]. The mode of diffusion resembles the Rayleigh scattering which
takes place in light scattering due to density fluctuations (at low frequencies, cf page 36 of [5]
as discussed by John). The possible localized behaviour of the spectra (for larger values)
near θ = 0 and π/(2n) for different branches of the spectra seems to be the same as the
acoustical analogue of the localization found elsewhere [3, 5–8] since the physical length-
scale parameter used here is the mean free path of the molecular gases subjected to continuous
collisions. The results presented here, in fact, as the characteristics of our approach is similar
to that mentioned in [8] by Figotin and Klein, show that when a periodic medium with a
gap (in resulting spectra) is (slightly) randomized (like our orientation-free 6- and 8-velocity
cases), possible (Anderson) localization occurs in a vicinity of the edges of the gap (like that of
π/(2n) here) [15]. The localization behaviour for n = 3 or 4, however, is not exactly the same
as that reported before for n = 2 [3, 11]. This may be due to multiple scattering [1, 5] and/or
dynamical localization [4]. As we only consider plane waves propagating in a hard-sphere
gas, which are a kind of hard (Neumann) scatters [15], then it is interesting that our results for
the dispersion relation [12] resemble those of the Neumann cases (especially figure 9 in [15])
by Condat and Kirkpatrick.
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